Isaac Sensor Extension [omni.isaac.sensor]
The Isaac Sensor Extension provides a set of simulated physics based sensors like contact sensor, inertial measurement unit (IMU) sensor, effort sensor, RTX lidar, and interfaces to access them in the simulator
Contact Sensor
IMU sensor
Effort sensor
Lidar RTX sensor
Rotating Lidar PhysX sensor
Camera sensor
- class Camera(prim_path: str, name: str = 'camera', frequency: Optional[int] = None, dt: Optional[str] = None, resolution: Optional[Tuple[int, int]] = None, position: Optional[numpy.ndarray] = None, orientation: Optional[numpy.ndarray] = None, translation: Optional[numpy.ndarray] = None, render_product_path: Optional[str] = None)
Provides high level functions to deal with a camera prim and its attributes/ properties. If there is a camera prim present at the path, it will use it. Otherwise, a new Camera prim at the specified prim path will be created.
- Parameters
prim_path (str) – prim path of the Camera Prim to encapsulate or create.
name (str, optional) – shortname to be used as a key by Scene class. Note: needs to be unique if the object is added to the Scene. Defaults to “camera”.
frequency (Optional[int], optional) – Frequency of the sensor (i.e: how often is the data frame updated). Defaults to None.
dt (Optional[str], optional) – dt of the sensor (i.e: period at which a the data frame updated). Defaults to None.
resolution (Optional[Tuple[int, int]], optional) – resolution of the camera (width, height). Defaults to None.
position (Optional[Sequence[float]], optional) – position in the world frame of the prim. shape is (3, ). Defaults to None, which means left unchanged.
translation (Optional[Sequence[float]], optional) – translation in the local frame of the prim (with respect to its parent prim). shape is (3, ). Defaults to None, which means left unchanged.
orientation (Optional[Sequence[float]], optional) – quaternion orientation in the world/ local frame of the prim (depends if translation or position is specified). quaternion is scalar-first (w, x, y, z). shape is (4, ). Defaults to None, which means left unchanged.
render_product_path (str) – path to an existing render product, will be used instead of creating a new render product the resolution and camera attached to this render product will be set based on the input arguments. Note: Using same render product path on two Camera objects with different camera prims, resolutions is not supported Defaults to None
- add_bounding_box_2d_loose_to_frame() None
Attach the bounding_box_2d_loose annotator to this camera. The bounding_box_2d_loose annotator returns:
np.array shape: (num_objects, 1) dtype: np.dtype([
(“semanticId”, “<u4”), (“x_min”, “<i4”), (“y_min”, “<i4”), (“x_max”, “<i4”), (“y_max”, “<i4”), (“occlusionRatio”, “<f4”),
])
See more details: https://docs.omniverse.nvidia.com/extensions/latest/ext_replicator/annotators_details.html#bounding-box-2d-loose
- add_bounding_box_2d_tight_to_frame() None
Attach the bounding_box_2d_tight annotator to this camera. The bounding_box_2d_tight annotator returns:
np.array shape: (num_objects, 1) dtype: np.dtype([
(“semanticId”, “<u4”), (“x_min”, “<i4”), (“y_min”, “<i4”), (“x_max”, “<i4”), (“y_max”, “<i4”), (“occlusionRatio”, “<f4”),
])
See more details: https://docs.omniverse.nvidia.com/extensions/latest/ext_replicator/annotators_details.html#bounding-box-2d-tight
- add_bounding_box_3d_to_frame() None
- add_distance_to_camera_to_frame() None
Attach the distance_to_camera_to_frame annotator to this camera. The distance_to_camera_to_frame annotator returns:
np.array shape: (width, height, 1) dtype: np.float32
See more details: https://docs.omniverse.nvidia.com/extensions/latest/ext_replicator/annotators_details.html#distance-to-camera
- add_distance_to_image_plane_to_frame() None
Attach the distance_to_image_plane annotator to this camera. The distance_to_image_plane annotator returns:
np.array shape: (width, height, 1) dtype: np.float32
See more details: https://docs.omniverse.nvidia.com/extensions/latest/ext_replicator/annotators_details.html#distance-to-image-plane
- add_instance_id_segmentation_to_frame() None
Attach the instance_id_segmentation annotator to this camera. The instance_id_segmentation annotator returns:
np.array shape: (width, height, 1) or (width, height, 4) if colorize is set to true dtype: np.uint32 or np.uint8 if colorize is set to true
See more details: https://docs.omniverse.nvidia.com/extensions/latest/ext_replicator/annotators_details.html#instance-id-segmentation
- add_instance_segmentation_to_frame() None
Attach the instance_segmentation annotator to this camera. The main difference between instance id segmentation and instance segmentation are that instance segmentation annotator goes down the hierarchy to the lowest level prim which has semantic labels, which instance id segmentation always goes down to the leaf prim. The instance_segmentation annotator returns:
np.array shape: (width, height, 1) or (width, height, 4) if colorize is set to true dtype: np.uint32 or np.uint8 if colorize is set to true
See more details: https://docs.omniverse.nvidia.com/extensions/latest/ext_replicator/annotators_details.html#instance-segmentation
- add_motion_vectors_to_frame() None
Attach the motion vectors annotator to this camera. The motion vectors annotator returns:
np.array shape: (width, height, 4) dtype: np.float32
See more details: https://docs.omniverse.nvidia.com/extensions/latest/ext_replicator/annotators_details.html#motion-vectors
- add_normals_to_frame() None
Attach the normals annotator to this camera. The normals annotator returns:
np.array shape: (width, height, 4) dtype: np.float32
See more details: https://docs.omniverse.nvidia.com/extensions/latest/ext_replicator/annotators_details.html#normals
- add_occlusion_to_frame() None
Attach the occlusion annotator to this camera. The occlusion annotator returns:
np.array shape: (num_objects, 1) dtype: np.dtype([(“instanceId”, “<u4”), (“semanticId”, “<u4”), (“occlusionRatio”, “<f4”)])
- add_pointcloud_to_frame(include_unlabelled: bool = False)
Attach the pointcloud annotator to this camera. The pointcloud annotator returns:
np.array shape: (num_points, 3) dtype: np.float32
See more details: https://docs.omniverse.nvidia.com/extensions/latest/ext_replicator/annotators_details.html#point-cloud
- add_semantic_segmentation_to_frame() None
Attach the semantic_segmentation annotator to this camera. The semantic_segmentation annotator returns:
np.array shape: (width, height, 1) or (width, height, 4) if colorize is set to true dtype: np.uint32 or np.uint8 if colorize is set to true
See more details: https://docs.omniverse.nvidia.com/extensions/latest/ext_replicator/annotators_details.html#semantic-segmentation
- apply_visual_material(visual_material: omni.isaac.core.materials.visual_material.VisualMaterial, weaker_than_descendants: bool = False) None
Apply visual material to the held prim and optionally its descendants.
- Parameters
visual_material (VisualMaterial) – visual material to be applied to the held prim. Currently supports PreviewSurface, OmniPBR and OmniGlass.
weaker_than_descendants (bool, optional) – True if the material shouldn’t override the descendants materials, otherwise False. Defaults to False.
Example:
>>> from omni.isaac.core.materials import OmniGlass >>> >>> # create a dark-red glass visual material >>> material = OmniGlass( ... prim_path="/World/material/glass", # path to the material prim to create ... ior=1.25, ... depth=0.001, ... thin_walled=False, ... color=np.array([0.5, 0.0, 0.0]) ... ) >>> prim.apply_visual_material(material)
- get_applied_visual_material() omni.isaac.core.materials.visual_material.VisualMaterial
Return the current applied visual material in case it was applied using apply_visual_material or it’s one of the following materials that was already applied before: PreviewSurface, OmniPBR and OmniGlass.
- Returns
the current applied visual material if its type is currently supported.
- Return type
Example:
>>> # given a visual material applied >>> prim.get_applied_visual_material() <omni.isaac.core.materials.omni_glass.OmniGlass object at 0x7f36263106a0>
- get_aspect_ratio() float
- Returns
ratio between width and height
- Return type
float
- get_clipping_range() Tuple[float, float]
- Returns
near_distance and far_distance respectively.
- Return type
Tuple[float, float]
- get_current_frame(clone=False) dict
- Parameters
clone (bool, optional) – if True, returns a deepcopy of the current frame. Defaults to False.
- Returns
returns the current frame of data
- Return type
dict
- get_default_state() omni.isaac.core.utils.types.XFormPrimState
Get the default prim states (spatial position and orientation).
- Returns
an object that contains the default state of the prim (position and orientation)
- Return type
Example:
>>> state = prim.get_default_state() >>> state <omni.isaac.core.utils.types.XFormPrimState object at 0x7f33addda650> >>> >>> state.position [-4.5299529e-08 -1.8347054e-09 -2.8610229e-08] >>> state.orientation [1. 0. 0. 0.]
- get_depth() numpy.ndarray
- Returns
(n x m x 1) depth data for each point.
- Return type
depth (np.ndarray)
- get_dt() float
- Returns
gets the dt to acquire new data frames
- Return type
float
- get_fisheye_polynomial_properties() Tuple[float, float, float, float, float, List]
- Returns
- nominal_width, nominal_height, optical_centre_x,
optical_centre_y, max_fov and polynomial respectively.
- Return type
Tuple[float, float, float, float, float, List]
- get_focal_length() float
- Returns
Longer Lens Lengths Narrower FOV, Shorter Lens Lengths Wider FOV
- Return type
float
- get_focus_distance() float
- Returns
Distance from the camera to the focus plane (in stage units).
- Return type
float
- get_frequency() float
- Returns
gets the frequency to acquire new data frames
- Return type
float
- get_horizontal_aperture() float
_ :returns: Emulates sensor/film width on a camera :rtype: float
- get_horizontal_fov() float
- Returns
horizontal field of view in pixels
- Return type
float
- get_image_coords_from_world_points(points_3d: numpy.ndarray) numpy.ndarray
- Using pinhole perspective projection, this method projects 3d points in the world frame to the image
plane giving the pixel coordinates [[0, width], [0, height]]
- Parameters
points_3d (np.ndarray) – 3d points (X, Y, Z) in world frame. shape is (n, 3) where n is the number of points.
- Returns
2d points (u, v) corresponds to the pixel coordinates. shape is (n, 2) where n is the number of points.
- Return type
np.ndarray
- get_intrinsics_matrix() numpy.ndarray
- Returns
the intrinsics of the camera (used for calibration)
- Return type
np.ndarray
- get_lens_aperture() float
- Returns
controls lens aperture (i.e focusing). 0 turns off focusing.
- Return type
float
- get_local_pose(camera_axes: str = 'world') None
Gets prim’s pose with respect to the local frame (the prim’s parent frame in the world axes).
- Parameters
camera_axes (str, optional) – camera axes, world is (+Z up, +X forward), ros is (+Y up, +Z forward) and usd is (+Y up and -Z forward). Defaults to “world”.
- Returns
- first index is position in the local frame of the prim. shape is (3, ).
second index is quaternion orientation in the local frame of the prim. quaternion is scalar-first (w, x, y, z). shape is (4, ).
- Return type
Tuple[np.ndarray, np.ndarray]
- get_local_scale() numpy.ndarray
Get prim’s scale with respect to the local frame (the parent’s frame)
- Returns
scale applied to the prim’s dimensions in the local frame. shape is (3, ).
- Return type
np.ndarray
Example:
>>> prim.get_local_scale() [1. 1. 1.]
- get_pointcloud() numpy.ndarray
- Returns
(N x 3) 3d points (X, Y, Z) in camera frame. Shape is (N x 3) where N is the number of points.
- Return type
pointcloud (np.ndarray)
Note
This currently uses the depth annotator to generate the pointcloud. In the future, this will be switched to use the pointcloud annotator.
- get_projection_mode() str
- Returns
perspective or orthographic.
- Return type
str
- get_projection_type() str
- Returns
pinhole, fisheyeOrthographic, fisheyeEquidistant, fisheyeEquisolid, fisheyePolynomial or fisheyeSpherical
- Return type
str
- get_render_product_path() str
- Returns
gets the path to the render product attached to this camera
- Return type
string
- get_resolution() Tuple[int, int]
- Returns
width and height respectively.
- Return type
Tuple[int, int]
- get_rgb() numpy.ndarray
- Returns
(N x 3) RGB color data for each point.
- Return type
rgb (np.ndarray)
- get_rgba() numpy.ndarray
- Returns
(N x 4) RGBa color data for each point.
- Return type
rgba (np.ndarray)
- get_shutter_properties() Tuple[float, float]
- Returns
delay_open and delay close respectively.
- Return type
Tuple[float, float]
- get_stereo_role() str
- Returns
mono, left or right.
- Return type
str
- get_vertical_aperture() float
- Returns
Emulates sensor/film height on a camera.
- Return type
float
- get_vertical_fov() float
- Returns
vertical field of view in pixels
- Return type
float
- get_view_matrix_ros()
3D points in World Frame -> 3D points in Camera Ros Frame
- Returns
- the view matrix that transforms 3d points in the world frame to 3d points in the camera axes
with ros camera convention.
- Return type
np.ndarray
- get_visibility() bool
- Returns
true if the prim is visible in stage. false otherwise.
- Return type
bool
Example:
>>> # get the visible state of an visible prim on the stage >>> prim.get_visibility() True
- get_world_points_from_image_coords(points_2d: numpy.ndarray, depth: numpy.ndarray)
- Using pinhole perspective projection, this method does the inverse projection given the depth of the
pixels
- Parameters
points_2d (np.ndarray) – 2d points (u, v) corresponds to the pixel coordinates. shape is (n, 2) where n is the number of points.
depth (np.ndarray) – depth corresponds to each of the pixel coords. shape is (n,)
- Returns
(n, 3) 3d points (X, Y, Z) in world frame. shape is (n, 3) where n is the number of points.
- Return type
np.ndarray
- get_world_pose(camera_axes: str = 'world') Tuple[numpy.ndarray, numpy.ndarray]
Gets prim’s pose with respect to the world’s frame (always at [0, 0, 0] and unity quaternion not to be confused with /World Prim)
- Parameters
camera_axes (str, optional) – camera axes, world is (+Z up, +X forward), ros is (+Y up, +Z forward) and usd is (+Y up and -Z forward). Defaults to “world”.
- Returns
- first index is position in the world frame of the prim. shape is (3, ).
second index is quaternion orientation in the world frame of the prim. quaternion is scalar-first (w, x, y, z). shape is (4, ).
- Return type
Tuple[np.ndarray, np.ndarray]
- get_world_scale() numpy.ndarray
Get prim’s scale with respect to the world’s frame
- Returns
scale applied to the prim’s dimensions in the world frame. shape is (3, ).
- Return type
np.ndarray
Example:
>>> prim.get_world_scale() [1. 1. 1.]
- initialize(physics_sim_view=None) None
To be called before using this class after a reset of the world
- Parameters
physics_sim_view (_type_, optional) – _description_. Defaults to None.
- is_paused() bool
- Returns
is data collection paused.
- Return type
bool
- is_valid() bool
Check if the prim path has a valid USD Prim at it
- Returns
True is the current prim path corresponds to a valid prim in stage. False otherwise.
- Return type
bool
Example:
>>> # given an existing and valid prim >>> prims.is_valid() True
- is_visual_material_applied() bool
Check if there is a visual material applied
- Returns
True if there is a visual material applied. False otherwise.
- Return type
bool
Example:
>>> # given a visual material applied >>> prim.is_visual_material_applied() True
- property name: Optional[str]
Returns: str: name given to the prim when instantiating it. Otherwise None.
- property non_root_articulation_link: bool
Used to query if the prim is a non root articulation link
- Returns
True if the prim itself is a non root link
- Return type
bool
Example:
>>> # for a wrapped articulation (where the root prim has the Physics Articulation Root property applied) >>> prim.non_root_articulation_link False
- pause() None
pauses data collection and updating the data frame
- post_reset() None
Reset the prim to its default state (position and orientation).
Note
For an articulation, in addition to configuring the root prim’s default position and spatial orientation (defined via the
set_default_state
method), the joint’s positions, velocities, and efforts (defined via theset_joints_default_state
method) are imposedExample:
>>> prim.post_reset()
- property prim: pxr.Usd.Prim
Returns: Usd.Prim: USD Prim object that this object holds.
- property prim_path: str
Returns: str: prim path in the stage
- remove_bounding_box_2d_loose_from_frame() None
- remove_bounding_box_2d_tight_from_frame() None
- remove_bounding_box_3d_from_frame() None
- remove_distance_to_camera_from_frame() None
- remove_distance_to_image_plane_from_frame() None
- remove_instance_id_segmentation_from_frame() None
- remove_instance_segmentation_from_frame() None
- remove_motion_vectors_from_frame() None
- remove_normals_from_frame() None
- remove_occlusion_from_frame() None
- remove_pointcloud_from_frame() None
- remove_semantic_segmentation_from_frame() None
- resume() None
resumes data collection and updating the data frame
- set_clipping_range(near_distance: Optional[float] = None, far_distance: Optional[float] = None) None
Clips the view outside of both near and far range values.
- Parameters
near_distance (Optional[float], optional) – value to be used for near clipping. Defaults to None.
far_distance (Optional[float], optional) – value to be used for far clipping. Defaults to None.
- set_default_state(position: Optional[Sequence[float]] = None, orientation: Optional[Sequence[float]] = None) None
Set the default state of the prim (position and orientation), that will be used after each reset.
- Parameters
position (Optional[Sequence[float]], optional) – position in the world frame of the prim. shape is (3, ). Defaults to None, which means left unchanged.
orientation (Optional[Sequence[float]], optional) – quaternion orientation in the world frame of the prim. quaternion is scalar-first (w, x, y, z). shape is (4, ). Defaults to None, which means left unchanged.
Example:
>>> # configure default state >>> prim.set_default_state(position=np.array([1.0, 0.5, 0.0]), orientation=np.array([1, 0, 0, 0])) >>> >>> # set default states during post-reset >>> prim.post_reset()
- set_dt(value: float) None
- Parameters
value (float) – sets the dt to acquire new data frames
- set_fisheye_polynomial_properties(nominal_width: Optional[float], nominal_height: Optional[float], optical_centre_x: Optional[float], optical_centre_y: Optional[float], max_fov: Optional[float], polynomial: Optional[Sequence[float]]) None
- Parameters
nominal_width (Optional[float]) – Rendered Width (pixels)
nominal_height (Optional[float]) – Rendered Height (pixels)
optical_centre_x (Optional[float]) – Horizontal Render Position (pixels)
optical_centre_y (Optional[float]) – Vertical Render Position (pixels)
max_fov (Optional[float]) – maximum field of view (pixels)
polynomial (Optional[Sequence[float]]) – polynomial equation coefficients (sequence of 5 numbers) starting from A0, A1, A2, A3, A4
- set_focal_length(value: float)
- Parameters
value (float) – Longer Lens Lengths Narrower FOV, Shorter Lens Lengths Wider FOV
- set_focus_distance(value: float)
The distance at which perfect sharpness is achieved.
- Parameters
value (float) – Distance from the camera to the focus plane (in stage units).
- set_frequency(value: int) None
- Parameters
value (int) – sets the frequency to acquire new data frames
- set_horizontal_aperture(value: float) None
- Parameters
value (Optional[float], optional) – Emulates sensor/film width on a camera. Defaults to None.
- set_kannala_brandt_properties(nominal_width: float, nominal_height: float, optical_centre_x: float, optical_centre_y: float, max_fov: Optional[float], distortion_model: Sequence[float]) None
Approximates kannala brandt distortion with ftheta fisheye polynomial coefficients. :param nominal_width: Rendered Width (pixels) :type nominal_width: float :param nominal_height: Rendered Height (pixels) :type nominal_height: float :param optical_centre_x: Horizontal Render Position (pixels) :type optical_centre_x: float :param optical_centre_y: Vertical Render Position (pixels) :type optical_centre_y: float :param max_fov: maximum field of view (pixels) :type max_fov: Optional[float] :param distortion_model: kannala brandt generic distortion model coefficients (k1, k2, k3, k4) :type distortion_model: Sequence[float]
- set_lens_aperture(value: float)
- Controls Distance Blurring. Lower Numbers decrease focus range, larger
numbers increase it.
- Parameters
value (float) – controls lens aperture (i.e focusing). 0 turns off focusing.
- set_local_pose(translation: Optional[Sequence[float]] = None, orientation: Optional[Sequence[float]] = None, camera_axes: str = 'world') None
Sets prim’s pose with respect to the local frame (the prim’s parent frame in the world axes).
- Parameters
translation (Optional[Sequence[float]], optional) – translation in the local frame of the prim (with respect to its parent prim). shape is (3, ). Defaults to None, which means left unchanged.
orientation (Optional[Sequence[float]], optional) – quaternion orientation in the local frame of the prim. quaternion is scalar-first (w, x, y, z). shape is (4, ). Defaults to None, which means left unchanged.
camera_axes (str, optional) – camera axes, world is (+Z up, +X forward), ros is (+Y up, +Z forward) and usd is (+Y up and -Z forward). Defaults to “world”.
- set_local_scale(scale: Optional[Sequence[float]]) None
Set prim’s scale with respect to the local frame (the prim’s parent frame).
- Parameters
scale (Optional[Sequence[float]]) – scale to be applied to the prim’s dimensions. shape is (3, ). Defaults to None, which means left unchanged.
Example:
>>> # scale prim 10 times smaller >>> prim.set_local_scale(np.array([0.1, 0.1, 0.1]))
- set_matching_fisheye_polynomial_properties(nominal_width: float, nominal_height: float, optical_centre_x: float, optical_centre_y: float, max_fov: Optional[float], distortion_model: Sequence[float], distortion_fn: Callable) None
Approximates given distortion with ftheta fisheye polynomial coefficients. :param nominal_width: Rendered Width (pixels) :type nominal_width: float :param nominal_height: Rendered Height (pixels) :type nominal_height: float :param optical_centre_x: Horizontal Render Position (pixels) :type optical_centre_x: float :param optical_centre_y: Vertical Render Position (pixels) :type optical_centre_y: float :param max_fov: maximum field of view (pixels) :type max_fov: Optional[float] :param distortion_model: distortion model coefficients :type distortion_model: Sequence[float] :param distortion_fn: distortion function that takes points and returns distorted points :type distortion_fn: Callable
- set_projection_mode(value: str) None
Sets camera to perspective or orthographic mode.
- Parameters
value (str) – perspective or orthographic.
- set_projection_type(value: str) None
- Parameters
value (str) – pinhole: Standard Camera Projection (Disable Fisheye) fisheyeOrthographic: Full Frame using Orthographic Correction fisheyeEquidistant: Full Frame using Equidistant Correction fisheyeEquisolid: Full Frame using Equisolid Correction fisheyePolynomial: 360 Degree Spherical Projection fisheyeSpherical: 360 Degree Full Frame Projection
- set_rational_polynomial_properties(nominal_width: float, nominal_height: float, optical_centre_x: float, optical_centre_y: float, max_fov: Optional[float], distortion_model: Sequence[float]) None
Approximates rational polynomial distortion with ftheta fisheye polynomial coefficients. :param nominal_width: Rendered Width (pixels) :type nominal_width: float :param nominal_height: Rendered Height (pixels) :type nominal_height: float :param optical_centre_x: Horizontal Render Position (pixels) :type optical_centre_x: float :param optical_centre_y: Vertical Render Position (pixels) :type optical_centre_y: float :param max_fov: maximum field of view (pixels) :type max_fov: Optional[float] :param distortion_model: rational polynomial distortion model coefficients (k1, k2, p1, p2, k3, k4, k5, k6) :type distortion_model: Sequence[float]
- set_resolution(value: Tuple[int, int]) None
- Parameters
value (Tuple[int, int]) – width and height respectively.
- set_shutter_properties(delay_open: Optional[float] = None, delay_close: Optional[float] = None) None
- Parameters
delay_open (Optional[float], optional) – Used with Motion Blur to control blur amount, increased values delay shutter opening. Defaults to None.
delay_close (Optional[float], optional) – Used with Motion Blur to control blur amount, increased values forward the shutter close. Defaults to None.
- set_stereo_role(value: str) None
- Parameters
value (str) – mono, left or right.
- set_vertical_aperture(value: float) None
- Parameters
value (Optional[float], optional) – Emulates sensor/film height on a camera. Defaults to None.
- set_visibility(visible: bool) None
Set the visibility of the prim in stage
- Parameters
visible (bool) – flag to set the visibility of the usd prim in stage.
Example:
>>> # make prim not visible in the stage >>> prim.set_visibility(visible=False)
- set_world_pose(position: Optional[Sequence[float]] = None, orientation: Optional[Sequence[float]] = None, camera_axes: str = 'world') None
Sets prim’s pose with respect to the world’s frame (always at [0, 0, 0] and unity quaternion not to be confused with /World Prim).
- Parameters
position (Optional[Sequence[float]], optional) – position in the world frame of the prim. shape is (3, ). Defaults to None, which means left unchanged.
orientation (Optional[Sequence[float]], optional) – quaternion orientation in the world frame of the prim. quaternion is scalar-first (w, x, y, z). shape is (4, ). Defaults to None, which means left unchanged.
camera_axes (str, optional) – camera axes, world is (+Z up, +X forward), ros is (+Y up, +Z forward) and usd is (+Y up and -Z forward). Defaults to “world”.
- property supported_annotators: List[str]
Returns: List[str]: annotators supported by the camera
- distort_point_kannala_brandt(camera_matrix, distortion_model, x, y)
This helper function distorts point(s) using Kannala Brandt fisheye model. It should be equivalent to the following reference that uses OpenCV:
- def distort_point_kannala_brandt2(camera_matrix, distortion_model, x, y):
import cv2 ((fx,_,cx),(_,fy,cy),(_,_,_)) = camera_matrix pt_x, pt_y, pt_z = (x-cx)/fx, (y-cy)/fy, np.full(x.shape, 1.0) points3d = np.stack((pt_x, pt_y, pt_z), axis = -1) rvecs, tvecs = np.array([0.0,0.0,0.0]), np.array([0.0,0.0,0.0]) cameraMatrix, distCoeffs = np.array(camera_matrix), np.array(distortion_model) points, jac = cv2.fisheye.projectPoints(np.expand_dims(points3d, 1), rvecs, tvecs, cameraMatrix, distCoeffs) return np.array([points[:,0,0], points[:,0,1]])
- distort_point_rational_polynomial(camera_matrix, distortion_model, x, y)
This helper function distorts point(s) using rational polynomial model. It should be equivalent to the following reference that uses OpenCV:
- def distort_point_rational_polynomial(x, y)
import cv2 ((fx,_,cx),(_,fy,cy),(_,_,_)) = camera_matrix pt_x, pt_y, pt_z = (x-cx)/fx, (y-cy)/fy, np.full(x.shape, 1.0) points3d = np.stack((pt_x, pt_y, pt_z), axis = -1) rvecs, tvecs = np.array([0.0,0.0,0.0]), np.array([0.0,0.0,0.0]) cameraMatrix, distCoeffs = np.array(camera_matrix), np.array(distortion_coefficients) points, jac = cv2.projectPoints(points3d, rvecs, tvecs, cameraMatrix, distCoeffs) return np.array([points[:,0,0], points[:,0,1]])
- get_all_camera_objects(root_prim: str = '/')
Retrieve omni.isaac.sensor Camera objects for each camera in the scene.
- Parameters
root_prim (str) – Root prim where the world exists.
- Returns
A list of omni.isaac.sensor Camera objects
- Return type
Camera[]
- point_to_theta(camera_matrix, x, y)
This helper function returns the theta angle of the point.
Contact Sensor Interface
This submodule provides an interface to a simulated contact sensor. A simplified command is provided to create a contact sensor in the stage:
Once the contact sensor is created, you must first acquire this interface and then you can use this interface to access the contact sensor
Also, the offset of the contact sensor is also affect by the parent’s transformations.
1from omni.isaac.sensor import _sensor
2_cs = _sensor.acquire_contact_sensor_interface()
Note
if the contact sensor is not initially created under a valid rigid body parent, the contact sensor will not output any valid data even if the contact sensor is later attached to a valid rigid body parent.
Acquiring Extension Interface
To collect the most recent reading, call the interface get_sensor_reading(/path/to/sensor, use_latest_data=True). The result will be most recent sensor reading.
reading = _cs.get_sensor_reading("/World/Cube/Contact_Sensor", use_latest_data)
To collect the reading at the last sensor measurement time based on the sensor period, call the interface get_sensor_reading(/path/to/sensor). This will give you the physics step data closest to the sensor measurement time.
reading = _cs.get_sensor_reading("/World/Cube/Contact_Sensor")
To collect raw reading, call the interface get_contact_sensor_raw_data(/path/to/sensor). The result will return a list of raw contact data for that body.
raw_Contact = _cs.get_contact_sensor_raw_data("/World/Cube/Contact_Sensor")
Output Types
Interface Methods
IMU sensor Interface
This submodule provides an interface to a simulate IMU sensor, which provides ground truth linear acceleration, angular velocity, orientation data.
A simplified command is provided to create an IMU sensor:
Similiarly, once an IMU sensor is created, you can use this interface to interact with the simulated IMU sensor. You must first call the acquire_imu_sensor_interface.
1from omni.isaac.sensor import _sensor
2_is = _sensor.acquire_imu_sensor_interface()
Note
if the IMU sensor is not initially created under a valid rigid body parent, the IMU sensor will not output any valid data even if the IMU sensor is later attached to a valid rigid body parent. Also, the offset and orientation of the IMU sensor is also affect by the parent’s transformations.
Acquiring Extension Interface
To collect the most recent reading, call the interface get_sensor_reading(/path/to/sensor, use_latest_data = True). The result will be most recent sensor reading.
reading = _is.get_sensor_reading("/World/Cube/Imu_Sensor", use_latest_data = True)
To collect the reading at the last sensor measurement time based on the sensor period, call the interface get_sensor_reading(/path/to/sensor).
reading = _is.get_sensor_reading("/World/Cube/Imu_Sensor")
Since the sensor reading time is usually between two physics steps, linear interpolation method is used by default to get the reading at sensor time between the physics steps. However the get_sensor_reading can also accept a custom function in the event that a different interpolation strategy is prefered..
from typing import List
# Input Param: List of past IsSensorReadings, time of the expected sensor reading
def interpolation_function(data:List[_sensor.IsSensorReading], time:float) -> _sensor.IsSensorReading:
interpolated_reading = _sensor.IsSensorReading()
# do interpolation
return interpolated_reading
reading = _is.get_sensor_reading("/World/Cube/Imu_Sensor", interpolation_function = interpolation_function)
Note
The interpolation function will only be used if the sensor frequency is lower than the physics frequency and use_latest_data flag is .
Output Types
Interface Methods
Effort Sensor
Effort sensor is a python class for reading gronud truth joint effort measurements. The Effort sensor can be created directly in Python using the path of the joint of interest.
1from omni.isaac.sensor.scripts.effort_sensor import EffortSensor
2import numpy as np
3
4sensor = EffortSensor(prim_path="/World/Robot/revolute_joint")
Note
If the sensor was created with the incorrect prim path, simply delete the sensor and recreate it. If the measured joint needs to be changed and the new joint has the same parent, update_dof_name(dof_name:str)
function maybe used.
Acquiring Sensor data
To collect the most recent reading, call the interface get_sensor_reading(use_latest_data = True). The result will be most recent sensor reading.
reading = sensor.get_sensor_reading(use_latest_data = True)
To collect the reading at the last sensor measurement time based on the sensor period, call the interface get_sensor_reading().
reading = sensor.get_sensor_reading()
Since the sensor reading time is usually between two physics steps, linear interpolation method is used by default to get the reading at sensor time between the physics steps. However the get_sensor_reading can also accept a custom function in the event that a different interpolation strategy is prefered..
1from omni.isaac.sensor.scripts.effort_sensor import EsSensorReading
2
3# Input Param: List of past EsSensorReading, time of the expected sensor reading
4def interpolation_function(data, time):
5 interpolated_reading = EsSensorReading()
6 # do interpolation
7 return interpolated_reading
8
9reading = sensor.get_sensor_reading(interpolation_function)
Note
The interpolation function will only be used if the sensor frequency is lower than the physics frequency and use_latest_data flag is not enabled.
Output Types
EsSensorReading
time (float): The time of the sensor reading.
value (float): The measured effort on the joint.
is_valid (boolean): The validitty of the sensor measurement.
LightBeam sensor Interface
This submodule provides an interface to simulate a LightBeam sensor, which provides linear depth and hit positions of each raycast.
A simplified command is provided to create a LightBeam sensor:
Similiarly, once a LightBeam sensor is created, you can use this interface to interact with the simulated LightBeam sensor. You must first call the acquire_lightbeam_sensor_interface.
1from omni.isaac.sensor import _sensor
2_ls = _sensor.acquire_lightbeam_sensor_interface()
Acquiring Extension Interface
To collect the most recent data, call the following interface methods:
# This will return a vector of uint8_t (0 false, 1 true)
beam_hit = _ls.get_beam_hit_data("/World/LightBeam_Sensor")
# This will the number of rays in the light curtain
num_rays = _ls.get_num_rays("/World/LightBeam_Sensor")
# This will return a vector of floats of the linear depth of each raycast
linear_depth_data = _ls.get_linear_depth_data("/World/LightBeam_Sensor")
# This will return a vector of xyz points of hit positions of each raycast
hit_pos_data = _ls.get_hit_pos_data("/World/LightBeam_Sensor")
Interface Methods
Omnigraph Nodes
- Isaac Compute RTX Lidar Flat Scan Node
- Isaac Compute RTX Lidar Point Cloud Node
- Isaac Compute RTX Radar Point Cloud Node
- Isaac Create RTX Lidar Scan Buffer
- Isaac Print RTX Sensor Info
- Isaac Read Contact Sensor Node
- Isaac Read Effort Node
- Isaac Read IMU Node
- Isaac Read LightBeam Sensor Node
- Isaac Read RTX Lidar Point Data